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1 Problem Statement

A bowl with a hole in its base will sink when placed in water. The Saxons used this device
for timing purposes. Investigate the parameters that determine the time of sinking.

2 Introduction

2.1 History of timing devices

The first device used to measure time was a sundial. However, because sundials needed
light in order to work they couldn’t be used during cloudy days or night. It wasn’t long
until the first two different methods were introduced. The first using the movement of
stars and the second using water flowing through a little hole.

The oldest water clocks come from Egypt and date back to 1500 BC[1]. The first water
clocks were used more as timers than real clocks — for example, to measure intervals of
speech in Classical Athens.

Because of a strong need for measuring longer periods and the ability to track the con-
stantly changing length of more and more sophisticated designs were introduced. However,
we won’t cover them in this work.

Our aim will be to theoretically and experimentally examine on which parameters depends
the sinking time of the simplest water-based clocks — a bowl with a hole in its bottom.

2.2 Bowl

Before jumping to the problem itself, we have to first clarify one important term - that
being, what exactly is a bowl?

One could define bowl as any container which can store liquid, however this definition is
vague and enables many different objects to become a bowl.

In order to prevent this, we will have two more requirements. First that the height of the
bowl must be lower than the maximum diameter of itself (otherwise we would get a vase
or a glass). Second that after turning the bowl around a fixed axis perpendicular to its
base by arbitrary angle, we get the same shape. This implies that the horizontal cut of
the bowl at any height is a disk and that all the centers of these lie on a common line
perpendicular to those disks.

This is the definition we will use throughout the document1. Note that all common
types of bowls, such as semi-spherical, conical, cylindrical or those with shape of conical
frustum, do fulfil these conditions.

1If one used a weaker requirement on the rotational symmetry allowing bowls with shape of square frustum for example,
all of the discussed proprieties and relations would hold except for those connected to the surface tension at the time of
sinking in section 4.4
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Figure 1: The bowl scheme

2.3 Parameters

We will briefly define the most important parameters and their notation.

We will denote the inside water level as x and the outside as h. Every parameters indexed
with b, will refer to the bowl itself.

We will assume that the hole is circular and positioned in the center of the base. We will
denote its radius r. If this was not true, then our discussions in sections 3.3 and 4.2 would
have to be more complicated and would depend on the particular shape.

In correspondence to the previous subsection, we define the R(z) to be the inside radius
of the bowl in the given height z. Therefore integrating this function followingly should
give us the total inside volume of the bowl.

π

∫ hb

0

(R(z))2 dz = V

Also note that all derivatives are with respect to time.

3 Qualitative analysis

3.1 Applied forces

When a bowl with a hole in it’s bottom is put on water, it starts sinking and the water
outside starts flowing inside the bowl. As these two motions are different and different
forces apply, we will discus them separately.

3.1.1 Forces on bowl

There are two main forces which act on the bowl - the gravity and the buoyant forces.
These two have opposite direction, therefore one of them is cancelled and the other causes
the bowl to accelerate downwards, if gravity is greater, or upwards otherwise. As the
gravity force is usually higher than the buoyant (otherwise the bowl may not sink at all),
the result of this is that the water level outside becomes higher than the level inside.

As gravity force is proportional to the weight of the bowl and the buoyant force increases
with greater volume of air below the outside level inside the bowl, we can immediately see
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that as the weight increases, the time increases and as velocity of water flowing through
the hole decreases, the time also decreases.

Another force that acts on the sinking bowl is drag force. The drag force is proportional
to the bowl’s velocity and causes it to decelerate.

3.1.2 Forces on water

Due to the motion of the bowl, water level inside is lower that that outside. This creates
pressure difference outside and inside the bowl, which causes the water to start flowing
inside due to the pressure-gradient force.

As this force is the difference in pressure times the area of the hole (F = ∆p · A), we
can assume, that with increasing hole size, the water should flow in faster and as seen in
previous section, the bowl should therefore sink in less time.

Note that when the hole size is large enough (i.e. r ∼ R), the flowing through the hole is
instantaneous and the whole phenomenon resembles free fall in combined environment.

Another group of forces are the forces caused by the viscosity of water and friction between
the water and the base of the bowl as the water flows through the hole. These will cause
the water to decelerate.

3.1.3 Surface tension

The surface tension was not discussed yet as it affects both the bowl and the water.

The surface tension first appears when the bowl starts sinking - above the hole a water
bubble is created and the pressure of the water must overcome the pressure due to surface
tension in order to start sinking.

Another moment when it comes to play is just before the bowl finally sinks - the surface
tension creates a cap above the whole bowl which must be broken.

In both situations the sinking time is prolonged and the surface tension could also prevent
the bowl from sinking.

3.2 Archimedes’s principle

In the following two subsections we will discuss when and why the bowl does not sink.

The gravity force is what makes the bowl accelerate downwards, thus it must overcome
the buoyant force. The gravity force however needs not to be bigger than the buoyant
throughout the whole motion - only in extreme cases, that’s when the water level outside
equals the one inside. This can be expressed via the Archimedes’s principle2.

FG ≥ FB

FG = ρb · Vb · g
2Note that if the equation does not hold, the velocity at that point must be zero or tiny, therefore we neglect it.
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We can take the buoyant force when it’s maximal - when the bowl is almost sunk.

FB = ρ · Vb · g

ρb ≥ ρ

If this condition does not hold, the bowl sinks only partially.

3.3 Laplace pressure

The other reason, why the bowl may not sink, is caused by the surface tension. Before
water can start flowing into the bowl, it must overcome the pressure of the surface tension.
We assume, that the bubble will be semi-spherical as there the pressure is minimal. Then,
the pressure the water must provide equals the Laplace pressure of the bubble.

∆P = γ
2

r

Where γ is the surface tension for water.

In order to see whether the pressure is broken, we can imagine a situation where the water
pressure is maximal – that is when the gravity and buoyant3 forces are at equilibrium.∫ he

0

(R(z))2 dz =
m

πρ

From this, we could calculate the height of water outside at the equilibrium depending
on the particular form of R(z) and its antiderivative. It may also happen that there is no
such equilibrium – the gravity force is always higher than the buoyant. Then we can set
he = hb.

We can now obtain the following requirement from the know hydro-static pressure.

he >
2γ

rρg

When this does not hold, the bowl cannot start sinking4.

3.4 The fluid

Even though the problem statement asks for a description of a bowl placed on water, it
may be beneficial to briefly discuss some differences that would occur if the bowl was
placed on a different fluid.

It is intuitive to say that a bowl placed on honey or mercury would behave differently
than on water. There may be more parameters causing this. The important one, we
believe, are viscosity and closely connected concepts of adhesion and cohesion.

Viscosity describes how resistant is fluid to deformation. Therefore it defines how fast the
fluid spreads which is something that changes how the fluid flows into a bowl. Viscosity

3Note that in the following formula, we neglected the buoyant force on the walls of the bowl as this one is tiny compared
to the buoyant force on the air inside the bowl.

4It may happen that there is no equilibrium, yet the pressure is not sufficient (e.g. for an extremely tiny hole and very
dense or flat bowl), then the bowl should sink from outside as if there was no hole at all. As this is a rather extreme case,
we didn’t observe this effect in the experiments we made and it does not capture the essence of this phenomena, we will
not deal with this any further.
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is characteristic quantity for any Newtonian fluid and changes with temperature. From
[2] we see that viscosity of water changes noticeably when warmed. For that reason we
conducted an experiment with different temperatures of water and the results are shown
in experimental section (5.8).

Because of the ability of water molecules to form hydrogen bonds with their neighbors
the cohesive forces are significant. We have already discussed effects of surface tension
(3.1.3), so we will not deal with them here.

Capillary action may be another effect that could affect the sinking. Some of the hole-
diameters we worked within our experiments were small enough that the capillary action
may have occurred. However, the height of the hole is tiny which is in contrary to a
typical capillary tube. Therefore we decided to neglect any such effects.

4 Quantitative model

As we discussed in the previous section, the motion of the bowl and the flow of the water
can be described individually. Therefore we will derive separate equation for the motion
of the bowl and the flow of the water and then link these together.

4.1 Bernoulli equation

First, let’s examine the water, which is exactly inside the hole. At the beginning this
water has some potential energy, initial velocity, which is zero and pressure acting on it -
the atmospheric pressure.

The Bernoulli connects these properties in a way, that the following remains constant
throughout the process.

1

2
ρv2 + p+Hρg = const.

Or alternatively taking the velocity to be zero at the very beginning and after subtracting
atmospheric pressure from every pressure.

1

2
ρv2 + p+ ∆Hρg = 0

We can express the second and the third member in the equation in terms of x and h.

1

2
ρv2 + xρg − hρg = 0

v =
√

2|h− x|ρg
We obtained the velocity of the water inside the hole, however the Bernoulli equation
requires that there must only be laminar flow and no turbulent. Therefore we must prove
that the turbulent flow does not occur inside the hole.

This can be seen from the Reynolds number, which can be calculated followingly:

Re =
vr

ν
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For the bowls we used, the Reynolds number was at most 1, from which we can conclude
that the turbulent flow didn’t occur there and also wouldn’t occur for a reasonable hole
sizes, as the Reynolds number must be around 2000 for the turbulent flow to occur.

We can use the Continuity equation to link the velocity inside hole to the change in water
level.

dV = πr2 · c · dt
r2 · v · dt = (R(x))2dx

ẋ =
r2

(R(x))2

√
2 · |h− x| · g

4.2 Flow through the orifice

The equation derived in the previous subsection does not account with friction and viscous
forces which play a significant role when the water flows through sharp orifice.

If we take these into account, the flow becomes lower than the estimated. The Discharge
coefficient puts these two together.

Cd =
Qexp

Qtheo

Where Qexp is the real discharge and Qtheo is the theoretically calculated discharge. As
the area stays the same, we could write:

Cd =
vexp

vtheo

Therefore our equation if we take these forces into the account would look as follows:

ẋ = Cd
r2

(R(x))2

√
2 · |h− x| · g

This is the differential equation describing motion of the water.

We use Cd = 0.61 which is a standard value for an orifice [4]. The value could vary
slightly based on different size of the hole and velocity of water but those changes should
be insignificant and should not change the prediction.

4.3 Laws of motion

We now have to examine the behavior of the bowl. As was stated in qualitative analysis,
there are three forces acting on the bowl - the gravity, the buoyant and the drag force.
The resulting force is the difference of these.

F = FG − FB − FD

Where the gravity force equals:
FG = mg
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The buoyant force is the sum of the buoyant force acting on the bowl5 and the force acting
on the air inside the bowl.

FB = π

∫ h

x

(R(z))2 dz · ρ · g +m · g · ρ
ρb

h

hb

The drag force can be calculated from the velocity of the bowl.

FD =
1

2
CD · ρ · SD · ḣ2

Where SD is the surface affected by drag and CD is the drag coefficient, which depends
on the bowl’s shape. It might also happen during the sinking, that due to great difference
between levels outside the bowl starts moving upwards. Then the drag force has opposite
direction and the coefficient might also change at that moment.

Putting these together we obtain the resultant force.

F = m · g − π
∫ h

x

(R(z))2 dz · ρ · g − g · ρ · h
ρb · hb

− 1

2
C · ρ · SD · ḣ2

We can use the Laws of motion to link this force with bowl’s acceleration.

ḧ =
F

m

ḧ = g −
π
∫ h
x

(R(z))2 dz · ρ · g
m

− g · ρ · h
ρb · hb

− C · ρ · SD · ḣ2

2m

Thus, we obtained differential equation describing the motion of the bowl.

4.4 Sinking

The last thing that needs to be done is to determine when the bowl sinks.

When the level of water from outside reaches the height of the bowl, the water flows into
the bowl from the top and in a moment, the bowl sinks. However, first it must break the
pressure caused by surface tension at the top of the bowl.

We can once again calculate this using the Laplace pressure.

∆p =
2γ

R(hb)

As the bowl dives deeper, the hydro-static pressure from the additional height increases
and when this pressure equals the Laplace pressure, the water flows in and the bowl sinks.

h =
2γ

R(hb)ρg

This height will act as an imaginary increase to the height of the bowl. Therefore we can
write for the height of sinking:

hs = hb +
2γ

R(hb)ρg
5We assumed the walls of bowl have constant thickness. If this was not true, than the second member would have to

be more general as follows. FBw = m · g ·
ρ

ρb

Vw(h)

Vw(hb)
Assuming Vw(z) describes the volume of bowl’s walls up to the given

height z.
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4.5 Summary of the model

We derived two differential equations. One for the bowl and one for the water flowing
inside.

ẋ = Cd
r2

(R(x))2

√
2 · |h− x| · g

ḧ = g −
π
∫ h
x

(R(z))2 dz · ρ · g
m

− g · ρ · h
ρb · hb

− C · ρ · SD · ḣ2

2m

As solving these analytically would be very difficult or even impossible, we decided to
solve them numerically.

We implemented the iterated Backward Euler method (as it is less prone to errors than
the Forward Euler method) in programming language Python.

The initial conditions were all set to zero (x(0) = 0, h(0) = 0 and ḣ(0) = 0) and the

computation stopped whenever h = hb +
2γ

R(hb)ρg
.

5 Experiments

All the measured data that are not present in this section can be found in the Appendix.

5.1 Used bowls

Throughout the unexpected quarantine that was set due to the COVID-19 in the Czech
Republic, our ability to use 3D printed bowls was limited. Therefore we decided to use
two different types of bowls for experiments.

The first bowl was 3D printed from polyactic acid (PLA) and had cylindrical shape. PLA
has density ρ = 1241kg ·m−3 [5] and so it sinks when placed on water.

Parameters of the cylindrical bowl:

h = (60± 0.02)mm

d = (5± 0.02)mm

where h is the height and d is the diameter of the hole, as seen on Figure 2. We do
not provide diameter and mass on purpose. This type of bowl was used for measuring
the dependency on volume for which we printed many bowls with varying diameter and
consequently a different mass.

The second was a cup from Cottage cheese. This cup had walls that diverted from the
centre and thus the cup had the shape of a conical frustum. However, our model can
count for this different shape and predict the bowl’s behaviour. The disadvantage is
that the bowl was made from polypropylene which has a density lower than water: ρ =
850kg/m3[6]. This we solved by putting play-dough at the bottom of the cup consequently
increasing the overall density (this is discussed in detail in the following two sections).
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Parameters of the conical frustum bowl:

d1 = (61.90± 0.02)mm

d2 = (84.30± 0.02)mm

h = (42.80± 0.02)mm

m = (6.0± 0.5)g

where d1 is the diameter of the bottom, d2 the diameter of the top and h the height as
show on the following schema:

h

d

Figure 2: Cylindrical frustum bowl schema

d1

d2

h

Figure 3: Conical frustum bowl schema

5.1.1 Increasing density

In the section 3.2, we showed that whether a bowl sinks depends on its density. Because
the conical frustum bowl had lower density than water, we decided to increase its mass
with play-dough.

We tried two ways of placing the play-dough. In the first case, we tried to put it inside.
This, however, resulted in instability and a change in inner volume. Because of that,
we settled to placing the play-dough at the bottom (proposed by [7]) as shown in the
following two pictures. This method did not change the volume and resulted in a lower
centre of mass, therefore making the bowl more stable on water.

Figure 4: Conical frustum bowl front Figure 5: Conical frustum bowl bottom
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5.1.2 Play-dough

We experimented with two types of play-dough - Play-Doh and KOH-I-NOOR. The first
softened and changed its structure when immersed in water. However, we did not observe
any visible signs that water would alter the structure of the second type. As a consequence,
we used only the KOH-I-NOOR play-dough.

From Archimedes principle, we were able to estimate its density as: ρ = 1767kg/m3.
From the formula for propagation of uncertainty we calculated standard deviation as:

sf =

√(
∂f

∂x

)2

s2
x +

(
∂f

∂y

)2

s2
y +

(
∂f

∂z

)2

s2
z + ...

s =

√(
1

9 · 10−3

)2

10−6 +

(
− 0.159

8.1 · 10−5

)2

2.5 · 10−12

s ≈ ±1

9
kg/m3

And for density of play-dough we therefore got:

ρ = 1767± 1

9
kg/m3

5.2 Experimental approach

With both types of bowl, we begun by placing the bowl on the water surface as gently
and evenly as possible. When the bowl floated on the water surface and hadn’t began
sinking, we applied a small initial push in downwards direction needed to initiate sinking.
This was happening just with the smaller diameter holes where a spherical cup formed
inside the hole (as discussed in 3.3). However, this small initial push should not affect
the sinking time significantly, as it serves only to overcome the surface tension.

We also observed the effects of wetting, when the dry bowl sank slightly longer than the
same bowl after it was wetted. To prevent it from affecting the measurements, all of the
experiments were made with a wet bowl.

5.2.1 Experiments with cylindrical bowl

We used the cylindrical bowl for measuring the dependency on volume (5.7) and the effect
of viscosity (5.8).

In 5.7 we altered the diameter while the height remained the same. Varying height would
result in instability of the bowl during the initial part of the experiment thus we see
varying diameter as less error-prone method.

5.2.2 Experiments with conical frustum bowl

We used the conical frustum bowl for measuring the dependency on radius (5.5) and
dependency on density (5.6).
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When experimenting with the conical frustum bowl with 1.5 mm diameter hole, we noticed
an air-bubble forming under the bowl bottom due to the play-dough that was preventing
the air from escaping. This bubble significantly affected some of the experiments with
small hole diameters by partially blocking the hole and therefore slowing the water flow
into the bowl. With bigger holes, the bubble was able to escape through and didn’t affect
the experiment much. However, to prevent both of those scenarios, we made a narrow
hole at the play-dough-bowl conjunction to create an escape-route for the air and put
a mirror on the bottom of the tank, as seen on the image bellow, so we could find out
whether a bubble had formed. Any experiment when the bubble occurred was interrupted
and repeated.

Figure 6: Air bubble under the bowl

5.3 Conditions in laboratory

We conducted our experiments in two different places. Measurements 5.5 and 5.6 were
conducted in a laboratory with: t = 22◦C, p = 1007hPa and Φ = 71% where t is the
temperature, p the pressure and Φ the relative humidity and experiments 5.7 and 5.8 in
house with: t = 23.2◦C and Φ = 29% and an unknown pressure which we believe to be
comparable to the one in the lab.
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5.4 Reaction time

In all of our experiments we were tracking the time with watches which were stopped
when the bowl got under the surface of water. Although the watch were always operated
by a human experimenter we believe the reaction time can be neglected. Here we present
two reasons why.

The time was started and stopped by the same person. If the delay was added to the
time at the beginning the similar effect must have happened at the end. Those two delays
will have different lengths, however, we argue that they partially cancel out and make the
effect of reaction time smaller.

We also measured our own reaction time 6. The person who conducted vast majority of
experiments hat an average reaction time tr = 309ms. Compared to standard deviations
of majority of our experiments this number is small. Therefore, we have decided to neglect
the effect of reaction time in our findings.

5.5 Dependency on the orifice diameter

In this experiment, we used bowls with the shape of the conical frustum (5.1). To test
our hypothesis about the diameter, we drilled circular holes of different radii to bottoms
of the bowls (always in the middle) and tracked time needed for the bowl to sink. Each
bowl was loaded with 60g of play-dough which gives as overall density: ρ = 1611kg/m3.
We concluded 7 measurements for each diameter.

Figure 7: Dependency of time on diameter of the orifice

6We used following web page to do so: https://www.humanbenchmark.com/tests/reactiontime
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The measured values match very closely with the values computed from the simulation,
although they appear to be a bit higher than those predicted by our model.

5.6 Dependency on density

We do not explicitly discuss the dependency on density in our theory, although section
4.5 implies that there should be a relation between time and density.

For that reason we experimentally examined this relation. We used the conical frustum
bowl with a hole of diameter d = 4mm. Throughout the experiment, we were increasing
the weight of play-dough (from 60 g to 100 g) added to the bottom, thus increasing overall
density.

Figure 8: Dependency of time on density

We can see that the simulation here is steadily under the measured values, although they
are following a similar trend. We explain this by an error in determining the density of the
bowl (there are different types of polypropylene) and play-dough for which the method
from Archimedes principle might not be perfectly precise. This could be also showing in
Figure 7, a little, where the measured values are also slightly higher than those predicted.
However, in both of those experiment, we can see that the trend given by our computation
is clearly followed - this also proves our hypothesis.
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5.7 Dependency on volume

Cylindrical bowl was used in this experiment. We varied the diameter of the bottom,
thus increasing volume. The diameter ranged from 6 to 10 cm and the height was fixed
at 6 cm. The measurements for each diameter were repeated 5 times. With the biggest
diameter, the water flowed to the side and the bowl started tilting significantly. This
could theoretically change the height of the hole and therefore affect the results. Because
of that, we did not increase the diameter even more.

Figure 9: Dependency of time on volume

The data, as seen on the graph in Figure 9, show that there is a linear dependency
between the volume and time needed for sinking. We can see that the measured values
are slightly bellow the predicted values but following a very similar trend. This can be
explained by the fact that our model works with several coefficients that were not possible
to experimentally verify and which may vary from those used in the simulation.

5.8 Effect of viscosity

We experimented with two temperatures (4 measurements each) of water T1 = 20±0.1◦C
and T2 = 60.3 ± 0.1◦C. We used 3D printed bowls for this experiment even though the
PLA has lower melting point than polypropylene. Those could not be used because of low
melting point of our play-dough. It was not possible to sustain the temperature during
the whole sinking. However, we monitored the temperature during the whole process and
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we found that in both examples the difference between the temperature at the beginning
and at the end was smaller than 2◦C. Measured results (where ν is kinematic viscosity):

T
◦C

20.0± 0.1 60.3± 0.1

tavg
s

21.0± 0.4 20.9± 0.5

ν

m2 · 1s · 106
1.004 0.475

We conducted 4 measurements for two temperatures and can conclude that the effect of
changing viscosity of water due to temperature is insignificant.

6 Conclusion

In our work, we presented a thorough description of the Saxon bowl phenomena. We
discussed many different parameters that affect the sinking time of a bowl, after that a
comprehensive numerical model was created. This model was later verified experimentally.
From our experiments, it is possible to see that sometimes measurements do not fit exactly
into the theory. This may be due to the fact that our model uses several coefficients that
can greatly affect the outcome of simulation and can not be always precisely calculated.
Nevertheless, our model gives a complex description of the phenomena and as experiments
showed it can predict the trend well in a broad amount of different initial setups.

7 Acknowledgement

We would like to thank our physics and math teachers, namely Mgr. Hana Radová,
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A Dependency on diameter - data

7 measurements were conducted for each size of the drill bit.

d

mm
1.50± 0.02 2.00± 0.02 3.00± 0.02 4.00± 0.02 5.00± 0.05 6.00± 0.05 8.00± 0.05

t1
s

549.1 298.2 139.1 74.8 60.6 31.0 19.7

t2
s

501.2 305.3 138.9 74.6 61.3 31.3 19.7

t3
s

532.2 348.0 141.7 74.9 60.4 30.5 19.4

t4
s

497.8 358.6 143.2 75.1 60.8 30.7 20.2

t5
s

491.4 361.7 142.4 75.3 62.2 30.9 20.4

t5
s

502.6 365.4 140.2 74.6 61.7 31.2 19.8

t5
s

518.1 139.9 139.5 75.2 60.4 30.4 19.6

tavg
s

513.2± 19.4 341.0± 25.5 140.7± 1.6 74.9± 0.3 61.1± 0.6 30.9± 0.3 19.8± 0.3

ttheo
s

496.6 279.4 124.2 69.9 44.0 31.1 17.5

B Dependency on density - data

5 measurements were conducted for each density. mpd is the mass of play-dough, tavg

average value and ttheo calculated value from theory.

ρ
kg
m3

1611 1630 1645 1657 1666

mpd

g
60.00± 0.05 70.00± 0.05 80.00± 0.05 90.00± 0.05 100.00± 0.05

t1
s

73.8 68.6 62.3 54.9 53.5

t2
s

73.9 65.7 60.7 59.3 52.7

t3
s

74.6 67.4 60.3 56.2 53.5

t4
s

74.9 67.6 59.8 57.5 54.4

t5
s

73.5 66.9 58.0 57.7 54.3

tavg
s

74.1± 0.5 67.2± 0.1 60.2± 1.4 57.1± 1.5 53.7± 0.6

ttheo
s

69.5 64.9 61.1 57.9 55.2
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C Dependence on volume - data

The data for different initial diameters of cylindrical bowl. Diameter of the hole was
dh = (5.00 ± 0.02)mm during the whole experiment. db is the diameter of the bottom,
tavg average time and ttheo calculated value from theory.:

db
cm

3.00± 0.02 3.50± 0.02 4.00± 0.02 4.50± 0.02 5.00± 0.02

t1
s

37 62 95 125 165

t2
s

37 63 94 129 164

t3
s

42 62 95 130 163

t4
s

40 64 98 128 161

t5
s

39 60 96 127 162

tavg
s

39± 7 62± 5 96± 5 128± 7 163± 4

ttheo
s

58 75 102 134 170

D Effect of viscosity

The data for experiment with viscosity of water and its effect on sinking:

T
◦C

20.0± 0.1 60.3± 0.1

t1
s

21.1 20.7

t2
s

20.9 21.1

t3
s

21.14 20.9

t4
s

21.2 21.0

tavg
s

21.0± 0.4 20.9± 0.5

ν

m2 · 1s · 106
1.004 0.475
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